
Transactions of the ASABE

Vol. 50(5): 1565-1578 2007 American Society of Agricultural and Biological Engineers ISSN 0001-2351 1565

 

EVALUATING GPFARM CROP GROWTH, SOIL WATER, AND SOIL

NITROGEN COMPONENTS FOR COLORADO DRYLAND LOCATIONS

J. C. Ascough II,  G. S. McMaster,  A. A. Andales,  N. C. Hansen,  L. A. Sherrod

ABSTRACT. Alternative agricultural management systems in the semi‐arid Great Plains are receiving increasing attention.
GPFARM is a farm/ranch decision support system (DSS) designed to assist in strategic management planning for land units
from the field to the whole‐farm level. This study evaluated the regional applicability and efficacy of GPFARM based on
simulation model performance for dry mass grain yield, total soil profile water content, crop residue, and total soil profile
residual NO3-N across a range of dryland no‐till experimental sites in eastern Colorado. Field data were collected from 1987
through 1999 from an on‐going, long‐term experiment at three locations in eastern Colorado along a gradient of low
(Sterling), medium (Stratton), and high (Walsh) potential evapotranspiration. Simulated crop alternatives were winter wheat
(Triticum aestivum L.), corn (Zea mays L.), sorghum (Sorghum bicolor L.), proso millet (Panicum miliaceum L.), and fallow.
Relative error (RE) of simulated mean, root mean square error (RMSE), and index of agreement (d) model evaluation statistics
were calculated to compare modeled results to measured data. A one‐way, fixed‐effect ANOVA was also performed to
determine differences among experimental locations. GPFARM simulated versus observed REs ranged from -3% to 35% for
crop yield, 6% to 8% for total soil profile water content, -4% to 32% for crop residue, and -7% to -25% for total soil profile
residual NO3-N. For trend analysis (magnitudes and location differences), GPFARM simulations generally agreed with
observed trends and showed that the model was able to simulate location differences for the majority of model output
responses. GPFARM appears to be adequate for use in strategic planning of alternative cropping systems across eastern
Colorado dryland locations; however, further improvements in the crop growth and environmental components of the
simulation model (including improved parameterization) would improve its applicability for short‐term tactical planning
scenarios.

Keywords. Agroecosytem, Crop residue, Crop yield, GPFARM, Model evaluation, Soil nitrogen, Soil water.

gricultural software developers are delivering
increasingly comprehensive and sophisticated
products (e.g., decision support systems (DSSs);
simulation models; and budgeting, record

keeping, irrigation, and fertilizer management tools) for use
by farmers and ranchers. In the Great Plains, there has been
a recognized need for a systems approach in agricultural
research and development to attain economic and
environmental  sustainability (Ascough et al., 2002).
Likewise, there has been a recognized need for system‐level
decision support tools for agricultural advisors and
producers. Despite interest by agricultural advisors and
producers, most agricultural software is rarely adopted or
used on the farm or ranch, especially DDSs and simulation
models (Ascough et al., 1999, 2002). Furthermore, scientists
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and researchers developing these decision support tools are
typically reluctant to release them for use until they are
reasonably confident that the software output and results are
sufficiently accurate to meet design objectives.

The USDA‐ARS Agricultural Systems Research Unit
(ASRU) has developed a decision support system named
GPFARM (Great Plains Framework for Agricultural
Resource Management). GPFARM 2.6 encompasses stand‐
alone components such as a user interface, simulation model,
and databases (Ascough et al., 2002; McMaster et al., 2002;
Shaffer et al., 2000) that, when used in conjunction with other
components (e.g., farm economic budgeting and
multicriteria  decision analysis modules), provide a unique
decision support tool for farmers and ranchers. The general
purpose of GPFARM is to serve as a whole‐farm/ranch DSS
for strategic planning across the Great Plains by considering
production, economic, and environmental impact analysis,
thereby allowing assessment and comparison of alternative
agricultural  management systems. Agricultural consultants,
farmers, and ranchers are targeted as the primary users of
GPFARM. The major design requirements, based on
intended practical application, were that the system: (1) be
simple to understand and easy to use, (2) have minimum input
data and parameter requirements, and (3) produce
scientifically  sound and defensible results.

GPFARM has been evaluated in several different ways,
including general farm/ranch testing with producers
(i.e.,�expert  opinion evaluation), experimental field plot or
scientific testing, and trend analysis. For example, McMaster
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et al. (2003) used three winter wheat plant parameter sets
with different calibration levels to evaluate the GPFARM
2.01 crop growth module. Andales et al. (2003) evaluated
GPFARM 2.01 crop growth, water balance, and nutrient
cycling modules using rotation‐specific summit landscape
position data from three eastern Colorado locations.
Additional evaluation of GPFARM is occurring through two
ongoing cooperative research agreements: (1) GPFARM has
been adopted by the Colorado Association of Wheat Growers
and distributed to over 600 members for general on‐farm use,
and (2) Decision Commerce Group, Inc. (Billings, Montana)
is currently evaluating various model components for wider
technology transfer.

As indicated above, different GPFARM simulation
modules have been independently tested to varying degrees.
However, further evaluation is needed at a whole‐system
level to quantify crop yield and water quality model output
response, especially for strategic planning under the
environmental  conditions in the immediate target area of
eastern Colorado. In addition, many corrections and
enhancements have continued to be made to the GPFARM
2.6�modules.  Therefore, the main objective of this study was
to evaluate the long‐term (i.e., multi‐year) performance of
GPFARM 2.6 in simulating grain yield, soil water, crop
residue, and soil NO3-N across a north‐to‐south potential
evapotranspiration  (PET) gradient in eastern Colorado
dryland cropping systems. A secondary objective was to
examine the efficacy of different statistical techniques
commonly used in assessment and evaluation of simulation
model performance.

MATERIALS AND METHODS
GPFARM SIMULATION MODEL

The GPFARM DSS is a conglomerate of major components
designed to serve as an extensive decision support tool for
farmers and ranchers (fig. 1). These components include: (1) a
Microsoft Windows‐based graphical user interface (GUI); (2)
Microsoft Access databases containing soil, crop, weed,
climate, chemical, and economic parameters needed in the
simulations and analysis of results; (3) an object‐oriented
modeling framework (Shaffer et al., 2000) that integrates
modules for simulating soil water dynamics, N dynamics, crop
growth, weed growth, beef cattle production, pesticide
transport, and water/wind erosion; (4) a set of management
scenario analysis tools (e.g.,�a multi‐criteria decision making
model (MCDM), graphical/spatial output visualization/
summary report tables, and a stand‐alone farm/ranch economic
analysis); and (5) an internet‐based GPFARM information
system (http://infosys. ars.usda.gov) containing numerous links
to information on various farm and ranch management options.
Simulation modules that are directly related to the model output
responses presented in this article are briefly described below.

Crop growth module. This module is based on the Water
Erosion Prediction Project (WEPP) model crop growth
component (Arnold et al., 1995; Deer‐Ascough et al., 1998),
which was originally derived from the EPIC crop growth
model (Williams et al., 1989). It has been further modified in
GPFARM to incorporate elements from the Agricultural
Land Management Alternatives with Numerical Assessment
Criteria (ALMANAC) model (Kiniry et al., 1992). The crop
growth component can be characterized as using an energy‐

or carbon‐driven approach, whereby potential daily biomass
accumulation  is based on an energy to biomass conversion
factor and the interception of light by the canopy
(as�represented by the LAI and light extinction coefficients).
Stress factors for water and nitrogen are computed using
inputs from other independent modules within GPFARM.
Carbon and N are partitioned to plant components
(e.g.,�leaves,  roots, and grain). Currently, GPFARM is
parameterized  for winter wheat (Triticum aestivum L.), corn
(Zea mays L.), proso millet (Panicum miliaceum L.),
sunflower (Helianthus annuus L.), sorghum (Sorghum
bicolor L.), and foxtail/hay millet (Setaria italica L.,
Beauv.).

Soil properties module. This module estimates the soil water
retention curve (WRC) based on Brooks and Corey (1964)
parameters calculated from basic soil property information
(e.g., soil texture, bulk density, and organic matter content). This
information is obtained from the GPFARM STATSGO soil
survey database or provided directly by the user. The saturated
hydraulic conductivity (Ksat) is obtained from effective porosity
(Ahuja et al., 1989), and unsaturated hydraulic conductivity is
estimated from the WRC and Ksat using the Campbell (1974)
approach. The effects of tillage, residue cover, and
reconsolidation (due to rainfall) on bulk density are estimated
using the approach of Williams et al. (1984), and hydraulic
properties are updated using the regression equations of Rawls
and Brakensiek (1985).

PET module. This module is adapted from the Root Zone
Water Quality Model (RZWQM; Ahuja et al., 2000) and
calculates daily potential crop transpiration and soil
evaporation using the extended Shuttleworth‐Wallace model
(Farahani and Ahuja, 1996). Net radiation is calculated, and
the available energy for potential transpiration, bare soil
evaporation,  and/or residue‐covered soil evaporation is
partitioned.  Potential transpiration, soil evaporation, and
residue evaporation values then serve as the upper limits of
actual ET calculated in the water balance module.

Water balance module. This module is a simplification of
the RZWQM water balance routines (Ahuja et al., 2000) for
determining infiltration and soil water/chemical fluxes between
and during precipitation (rainfall, irrigation, or snowmelt)
events. The Green‐Ampt (Green and Ampt, 1911) method, as
executed in RZWQM, is used to simulate infiltration during a
rainstorm at small time intervals. Redistribution of soil water is
obtained by Darcian fluxes between adjacent soil horizons or
sub‐horizons, calculated at a 3 h to daily intervals. Both space
and time steps are coarser as compared to RZWQM, which uses
Richard's equation for soil water redistribution; however, the
simpler scheme in GPFARM accurately maintains mass
balance. Surface water supply exceeding the infiltration
capacity in any time interval of precipitation becomes surface
runoff. Drainage from the soil profile is estimated by assuming
a unit gradient at the bottom layer.

C and N cycling module. This module is based on the
Nitrogen Leaching and Economic Analysis Package
(NLEAP) model (Shaffer et al., 1991, 2001) and simulates
soil C and N cycling in surface residues and within the soil.
Each soil organic matter pool—a fast, readily decomposable
pool; a slower humus pool; and a surface residue pool
(Shaffer et al., 2001)—has a unique C:N ratio and is subject
to first‐order decomposition. Processes of nitrification,
ammonia volatilization, denitrification, crop N uptake, and
nitrate-N leaching are also simulated.
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Figure 1. Schematic diagram of GPFARM DSS components. Arrows indicate the flow of information.

For a more comprehensive description of these modules
and the GPFARM DSS, see Ascough et al. (2002), McMaster
et al. (2002, 2003), and Shaffer et al. (2004).

SITE DESCRIPTION AND CROPPING SYSTEMS

The long‐term sustainable Dryland Agroecosystems
Project (DAP) was initiated in 1985 at three sites in eastern
Colorado (Sterling, Stratton, and Walsh) to evaluate the

effects of cropping intensity on production, water use
efficiency, and selected soil chemical and physical properties
(Peterson et al., 1993). This experiment has three major
variables: (1) PET gradient, (2) topography (slope position),
and (3) cropping intensity under no‐till management (fig. 2).
Soils at each site were under conventional tillage crop‐fallow
management for at least 50 years prior to the initiation of this
study in 1985.

Figure 2. Schematic diagram of the Dryland Agroecosystems Project experimental design with climate, soil, and cropping system variables (from
Peterson et al., 2000).
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Table 1. Elevation, mean annual temperature, mean annual precipitation, and other climatic
properties of the eastern Colorado experimental sites (adapted from Sherrod et al., 2005).

Experimental
Site

Latitude and
Longitude

Elevation
(m)

Mean
Annual
Temp.
(°C)

Mean Annual
Precipitation
(1961‐1990)

(mm)

Days
Above
32°C
(days)

Growing Season
Open‐Pan

Evaporation
(mm)

Deficit
Water[a]

(mm)

Relative Potential
Evapotranspiration

(PET)

Sterling 40° 22′ 12″ N,
103° 7′ 48″ W

1341 9.3 440 42 1600 -1160 Low

Stratton 39° 10′ 48″ N,
102° 15′ 36″ W

1335 10.8 415 54 1725 -1310 Medium

Walsh 37° 13′ 48″ N,
102° 10′ 12″ W

1134 12.2 395 64 1975 -1580 High

[a] Deficit water = precipitation - open‐pan evaporation.

Table 2. Range of physical and hydraulic properties across soil horizons at the eastern Colorado experimental sites.

Landscape
Position

Soil Profile
Depth
(cm)

Bulk
Density
(g cm-3)

Sand
(%)

Clay
(%)

Organic
Matter

(%)
Porosity[a]

(m3 m-3)

Water Content[a]

Ksat
[a],[b]

(cm h-1)
33 kPa

(m3 m-3)
1500 kPa
(m3 m-3)

Sterling
Summit 141 1.21‐1.43 24.5‐45.1 20.7‐38.1 0.13‐1.37 0.46‐0.54 0.24‐0.34 0.14‐0.20 0.86‐3.67

Sideslope 150 1.18‐1.61 26.9‐85.7 2.2‐31.3 0.05‐1.50 0.39‐0.55 0.11‐0.32 0.05‐0.18 2.14‐16.18
Toeslope 159 1.30‐1.54 30.3‐76.0 9.5‐27.2 0.10‐2.30 0.42‐0.51 0.14‐0.30 0.08‐0.17 1.01‐6.53

Stratton
Summit 150 1.31‐1.41 20.0‐35.0 14.0‐36.0 0.01‐1.76 0.47‐0.51 0.24‐0.35 0.11‐0.21 0.23‐3.95

Sideslope 150 1.32‐1.64 21.3‐72.4 16.1‐34.9 0.03‐1.76 0.38‐0.50 0.19‐0.35 0.11‐0.20 0.34‐3.60
Toeslope 152 1.22‐1.41 23.0‐42.0 18.0‐36.0 0.86‐1.78 0.47‐0.54 0.24‐0.35 0.12‐0.21 0.31‐4.29

Walsh
Summit 155 1.17‐1.49 6.5‐67.6 14.3‐39.9 0.26‐1.02 0.44‐0.56 0.18‐0.39 0.11‐0.22 0.49‐5.22

Sideslope 157 1.19‐1.55 7.0‐71.5 10.4‐38.4 0.48‐0.79 0.42‐0.54 0.15‐0.38 0.08‐0.22 0.11‐5.52
Toeslope 171 1.32‐1.51 23.1‐70.0 17.0‐31.8 0.19‐1.76 0.43‐0.50 0.18‐0.33 0.11‐0.19 0.33‐4.21

[a] Estimated in GPFARM from Brooks‐Corey parameters.
[b] Ksat, saturated hydraulic conductivity.

The three sites represent a gradient of increasing PET
from north to south, but all have similar long‐term mean
annual precipitation (ranging from 395 to 440 mm; table 1).
The deficit water (i.e., precipitation minus open‐pan
evaporation) also increased from north to south, with -1160,
-1310, and -1580 mm year-1, for Sterling, Stratton, and
Walsh, respectively. At each site, a topographic variable is
represented by summit, sideslope, and toeslope landscape
positions along a catenary sequence. A range of physical and
hydraulic properties across soil horizons for these landscape
positions at the three DAP sites is given in table 2, along with
the soil hydraulic properties estimated by GPFARM. Each
slope position is correlated to a unique soil series common to
the geographic area such that nine different soil series are
represented across the three sites (Peterson, et al., 1993).

Various cropping systems, representing a gradient of
cropping intensities, were placed in strips across catenary
sequences at each site. The cropping systems were wheat‐
fallow [WF], wheat‐corn (or sorghum for the Walsh
site)‐fallow [WC(S)F], and wheat‐corn (or sorghum for the
Walsh site)‐millet‐fallow [WC(S)MF]. Each crop was
present in each cropping system every year. The cropping
system gradient was as follows: WF had an intensity factor
of 0.50 (cropped years divided by total years in the rotation),
and the intensity factors for WC(S)F and WC(S)MF were
0.67 and 0.75, respectively. Crops were planted using no‐till
planters and drills that only disturbed the soil in a narrow
band to allow for a seed row. Fertilizer N (32‐0‐0) and P
(10‐34‐0) were applied based on annual soil tests for
available N and P. Available soil N was obtained by KCl

extraction with Cd reduction for nitrate, and available soil P
was obtained by sodium bicarbonate extraction using the
Olsen method (Olsen and Sommers, 1982). Grain yield
response to P is not currently simulated in GPFARM, but it
was found to be small to negligible in the experiment.

MEASURED DATA
Measurements relevant to the evaluation of GPFARM 2.6

included daily weather data, grain yield, soil water content,
crop residue dry mass, and soil residual NO3-N. Additional
variables were measured (e.g., final dry matter biomass), as
described by Peterson et al. (2000), but were not considered
in this study. An automated weather station at each site
measured daily maximum and minimum air temperature,
mean relative humidity, precipitation, total solar radiation,
wind direction, and mean wind speed. Cumulative
precipitation for the eastern Colorado experiment locations
over the simulation period is shown in figure 3.

Grain yield was measured with a plot combine, while total
aboveground biomass was measured at harvest by hand
sampling. The harvest indices (grain yield/total biomass)
were determined from the hand samples. Soil water content
(30 cm increments down to a depth of 150 cm) was measured
at strategic times (e.g., bi‐weekly during summer months) in
each cropping system by use of a neutron attenuation probe.
Crop residue dry mass was measured at planting and
immediately  before harvest for each crop in each cropping
system. Soil residual NO3-N (at varying increments down to
a depth of 150 cm) was measured prior to planting to
determine fertilizer N requirements.
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Figure 3. Cumulative precipitation (with annual average overlay) for the eastern Colorado experiment locations over the simulation period (1988‐99).

GPFARM MODEL INITIALIZATION, CALIBRATION, AND
STATISTICAL EVALUATION

GPFARM climate input data included observed daily
precipitation,  maximum and minimum air temperatures,
solar radiation, wind speed, and relative humidity obtained
from the on‐site weather stations. The simulation model was
initialized using observed data for soil profile water content,
crop residue, and soil profile residual NO3-N corresponding
to simulation start dates. Observed bulk density, texture, and
organic matter content of the soil layers (table 2) were also
input into GPFARM. From these properties, the model
estimated the soil water retention curve, soil porosity (or
saturated water content), soil water content (WC) at field
capacity [WC (33 kPa)], soil water content at wilting point
[WC (1500 kPa)], and saturated/unsaturated hydraulic
conductivity (Rawls and Brakensiek, 1985; Ahuja et al.,
1989, 1999). Actual soil horizon depths and N application
rates were used in the simulations (data not shown).

Model calibration was performed for only the maximum
potential leaf area index (XMXLAI) and potential harvest
index (HI) plant growth parameters. For other plant growth
parameters of the crops involved in the study (i.e., winter
wheat, corn, proso millet, and sorghum), best parameter
estimates from the literature (e.g., McMaster et al., 2003)
were used (table 3) and verified to be within the ranges
recommended by Arnold et al. (1995) and Kiniry et al.
(1995). No calibrations were performed for the soil water,
soil residual NO3-N, and crop residue decomposition
processes. The XMXLAI for each crop was adjusted (within
ranges expected for the study site) to minimize the root mean
square error (RMSE) of simulated total aboveground
biomass. The HI for each crop was adjusted by trial and error
(based on observed HI) to minimize the RMSE of HI
predictions. Toeslope landscape position data from the
Sterling site (data not shown) were used to obtain calibrated
values of XMXLAI and HI for winter wheat, corn, and proso
millet. The XMXLAI and HI values for sorghum were
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Table 3. Important crop parameter values used in the GPFARM simulations.[a]

Parameter Value

Parameter Definition Units
Winter
Wheat Corn

Proso
Millet Sorghum

GDDMAX Growing degree‐days from planting to maturity °C days 2300 1500 1300 1800
HI[b] Harvest index 0‐1 ratio 0.48 0.65 0.45 0.50

HMAX Maximum canopy height m 0.91 2.60 1.20 1.01
XMXLAI[b] Maximum potential leaf area index (LAI) m2 m-2 2.00 3.50 2.40 3.50

BEINP Biomass to energy conversion ratio for a crop kg MJ-1 30.00 35.00 35.00 25.00
BN1 Normal fraction of nitrogen in crop biomass at emergence 0‐1 ratio 0.060 0.040 0.044 0.044
BN2 Normal fraction of nitrogen in crop biomass at mid‐season 0‐1 ratio 0.023 0.016 0.016 0.016
BN3 Normal fraction of nitrogen in crop biomass at maturity 0‐1 ratio 0.013 0.013 0.013 0.013

BTEMP Base temperature (air) used in calculating growing‐degree days °C 0.00 10.0 5.0 10.0
CRIT Growing degree days from planting to emergence °C days 140.0 60.0 65.0 60.0
DLAI Fraction through growing season when LAI begins to decline 0‐1 ratio 0.70 0.80 0.80 0.85

EXTNCT Radiation extinction coefficient unitless 0.65 0.65 0.65 0.60
OTEMP Optimal temperature for plant growth °C 20.0 25.0 20.0 27.5
RDMAX Maximum rooting depth m 1.5 1.5 1.0 1.5

RSR Root biomass to shoot biomass ratio 0‐1 ratio 0.25 0.25 0.25 0.25
SPRIOD Period over which senescence occurs days 14 30 30 40
RLAD Rate of LAI decline unitless 1.0 1.0 1.0 1.0
PPOP1 Plant density at FMLAI1 plants m-2 125 4 125 5

FMLAI1 Fraction of XMXLAI corresponding to PPOP1 0‐1 ratio 0.60 0.47 0.60 0.43
PPOP2 Plant density at FMLAI2 plants m-2 250 7 250 15

FMLAI2 Fraction of XMXLAI corresponding to PPOP2 0‐1 ratio 0.95 0.80 0.80 0.79
[a] Adapted from Andales et al. (2003).
[b] Calibrated to optimize predicted total biomass, HI, and grain yield.

calibrated using Walsh summit landscape position data
(wheat‐sorghum‐fallow rotation beginning with the sorghum
phase in 1988; data not shown) because sorghum was planted
only at that location. The calibrated parameters were
subsequently used for the other landscape positions at the
experimental sites in this study (e.g.,�the Sterling toeslope
calibrated parameters were used for all three Stratton
landscape positions).

For the calibration at the Sterling toeslope and Walsh
summit landscape positions, simulated grain yield agreed
with observed values, and simulated total soil profile water
content was slightly lower than observed (fig. 4). The
calibrated HI values for winter wheat (HI = 0.48) and corn
(HI�= 0.65) (table�3) were considerably higher than those
recommended by Kiniry et al. (1995), which were 0.40 and
0.55, respectively. Although the simulated harvest‐time HI

values, (which were adjusted in the model for water,
temperature,  and N stresses) ended up much lower, the high
calibrated HI value for corn may have resulted in an overall
bias towards overpredicting yield. Andales et al. (2003)
provides additional discussion on the model calibration
process.

The simulation periods for evaluation began in 1988 and
ended in 1997, 1999, and 1993 for the WF, WC(S)F, and
WC(S)MF rotations, respectively. Average (i.e., from two
replicates) total soil profile water content, grain yield, crop
residue, and total residual soil profile NO3-N observed
during the above periods were compared with corresponding
GPFARM simulation outputs. Grain yield and crop residue
dry mass data were pooled across all rotation phases and
landscape positions at each location. Total soil profile water
content and total soil profile residual NO3-N data were

     
Figure 4. Simulated grain yield and total soil profile (150 cm deep) water content against observed values for calibration years at the Sterling
experimental site toeslope position (adapted from Andales et al., 2003).
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pooled across landscape positions at each location. The
following three statistics were calculated to quantify the
accuracy of the GPFARM simulations: relative error (RE),
which shows bias of the predicted mean relative to the
observed mean; root mean square error (RMSE), which
shows the average deviation between predicted and observed
values, regardless of sign; and index of agreement (d), which
gives the proportion of the observed variance that is
explained by the model. The simulated and observed
coefficient of variation (CV), which shows whether or not
simulated and observed variability are similar, was also
calculated.  Relative error was expressed in percent as:

 ( )
100RE

O

OP −
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where P  is the predicted mean and O  is the observed mean.
The RMSE was calculated by:
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where Pi, Oi, and n are as previously defined, OPP ii −=' ,
and OOO ii −=' , where O  is as previously defined, and the
enclosing bars (| |) indicate absolute values. A d value of one
indicates complete agreement between model predictions
and observations. The RMSE and d values indicate the
average event‐by‐event (short‐term) prediction errors, as
opposed to the RE, which is an arithmetic average over the
duration of data (i.e., RE shows long‐term bias). Additional
statistical analysis was performed to determine differences
among experimental sites with a one‐way, fixed‐effect
ANOVA used to test the effect of location on measured data
and GPFARM simulation model output responses. Tukey's
least significant difference (LSD) was applied post‐hoc to
determine statistical significance between means with P <
0.05 considered significant. The ANOVA and Tukey's LSD
analysis were conducted using SigmaStat 3.11 (Systat, 2006).

Finally, the evaluations of soil water and soil residual
NO3-N simulations in this study were limited to total soil
profile amounts. In addition, observed grain yields affected
by severe weed infestation, poor or erratic emergence due to
hard surface soil conditions, hail damage, or killing frost
were excluded from comparisons with simulated grain yields
since the model was not designed to account for these
extreme events. Steiner et al. (1987) and Cabelguenne et al.
(1999) used similar approaches of data screening to limit
evaluations to the validity domain of the models. GPFARM
does include a weed module (Canner et al., 2002), but
quantitative  observations of infestation were insufficient for
weed module calibration.

RESULTS AND DISCUSSION
GRAIN YIELD EVALUATION

GPFARM was somewhat inconsistent in its ability to
simulate measured grain yields. With the exception of corn
yield, model performance was reasonable for long‐term
mean annual yields (both magnitudes and differences)
between locations (table 4) but was less satisfactory for
individual years. Only winter wheat and proso millet were
grown at all three locations, with Walsh having significantly
lower observed yields than Sterling and Stratton for both
crops. Both corn and winter wheat had significantly higher
observed yields at Stratton, whereas proso millet yield was
significantly highest at Sterling. GPFARM simulations of
winter wheat grain yield showed significantly lower yields at
Walsh (matching the observed) but could not distinguish
statistically  (P < 0.05) between Sterling and Stratton (with
simulated yield at Stratton being slightly less than Sterling,
the opposite of the observed). Model simulations of proso
millet yields could not statistically distinguish between the
three locations, although the simulated yield at Walsh was
lowest, matching the trend of observed yields being lowest at
Walsh. In addition, GPFARM was able to correctly simulate
corn grain yield differences between Sterling and Stratton.

The REs in simulated winter wheat grain yield were less
than ±15%, with the lowest relative error occurring at
Sterling (where winter wheat was calibrated at the toeslope
position) and the largest relative error at Stratton (table 4 and
fig. 5). Mean winter wheat grain yields were overestimated
at Sterling and underestimated at Stratton and Walsh (fig. 5).
Exhibiting the same trend as RE, RMSE values for winter
wheat grain yield were lower at Sterling than at Stratton and
Walsh (table�4).

The d values for winter wheat grain yield ranged from 0.46
at Stratton to 0.63 at Walsh. There was a tendency to
underestimate  wheat grain yield variability (CV) at Sterling
and to slightly overestimate variability at Stratton and Walsh
(table 4). The REs in simulated corn grain yield were the
largest among the four crops (table 4 and fig. 5), with mean
corn grain yields overpredicted by around 35% at Sterling
and 33% at Stratton. Correspondingly, RMSE values for corn
grain yield (table 4) were the highest (>2000 kg ha-1) among
the four crops, and were slightly lower at Stratton than at
Sterling (where corn parameters were calibrated at the
toeslope position). Agreement between simulated and
observed corn grain yields was lower than that for winter
wheat, with corn grain yield agreement ranging from 0.40 to
0.47 for Stratton and Sterling, respectively. The simulated
CV was underestimated by approximately 10% at both
locations (table�4). Two factors potentially contributed to
overprediction of corn yield. First, the toeslope landscape
position, which has more favorable soil and water conditions
compared to the summit and sideslope landscape positions,
was selected for calibration because potential HI should
represent unstressed conditions with respect to water,
temperature,  or N (Williams et al., 1989). The corn HI value
of 0.65 (obtained by calibration at the Sterling toeslope
position) may have been too high, resulting in an overall bias
towards overpredicting corn grain yield. Second, corn is very
sensitive to water deficits and water stress during tasseling,
silking, and early grain filling. Using long‐term on‐farm
records (32 to 88 years) at five sites in northeastern Colorado,
Nielsen (1996) showed a strong correlation between
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Table 4. Evaluation statistics for simulated grain yield, total soil profile water content, crop
residue, and total residual soil profile NO3-N at the eastern Colorado experimental sites.

Location
No. of

Observations
Observation

Years

Observed GPFARM Simulated Relative
Error RMSE dMean[a] CV Mean[a] CV

Winter wheat grain yield
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Sterling 54 1989‐1999 2316 b 27 2394 b 18 3.4 622 0.58
Stratton 72 1988‐1996 2694 c 30 2294 b 31 -14.9 1082 0.46
Walsh 63 1989‐1997 2009 a 30 1935 a 35 -3.7 701 0.63

Corn grain yield
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Sterling 40 1988‐1999 3795 a 38 5134 a 28 35.3 2188 0.47
Stratton 30 1990‐1996 4616 b 25 6131 b 16 32.8 2119 0.4

Proso millet grain yield
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Sterling 13 1988‐1992 2049 b 29 1963 12 -4.2 706 0.13
Stratton 12 1988‐1992 1915 b 25 2071 47 8.2 912 0.48
Walsh 6 1989‐1990 1314 a 38 1602 21 21.9 495 0.67

Sorghum grain yield
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Walsh 58 1988‐1997 2733 39 2621 39 -4.1 858 0.81

Total soil profile water content
(mm) (%) (mm) (%) (%) (mm) (unitless)

Sterling 783 1988‐1999 276 a 25 299 a 22 8.3 61 0.79
Stratton 852 1988‐1998 314 b 30 337 c 18 7.4 78 0.73
Walsh 658 1988‐1998 303 b 16 322 b 17 6.3 54 0.71

Crop residue
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Sterling 224 1988‐1999 3707 b 50 3568 b 41 -3.8 1530 0.76
Stratton 325 1987‐1997 3371 b 64 3746 b 52 11.1 2099 0.7
Walsh 318 1988‐1997 2237 a 72 2949 a 58 31.8 1912 0.62

Total soil profile residual NO3-N
(kg ha-1) (%) (kg ha-1) (%) (%) (kg ha-1) (unitless)

Sterling 131 1988‐1999 65 a 49 56 a 51 -14.6 32 0.69
Stratton 180 1987‐1997 76 b 49 71 b 67 -6.6 50 0.59
Walsh 165 1987‐1997 67 a 68 50 a 59 -25.1 52 0.45

[a] Within‐column means followed by the same letter are not significantly different using Tukey's LSD at P < 0.05.

Figure 5. Simulated against observed winter wheat, corn, proso millet, and sorghum average dry mass grain yield values for the eastern Colorado
experiment locations (RE is the relative error).
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Figure 6. Simulated against observed winter wheat (a through c) and
proso millet (d through f) average dry mass grain yield values for the
eastern Colorado experiment locations (d is the index of agreement).

precipitation and corn grain yield during the six‐week period
of July 15 to August 25. The GPFARM crop growth model did
not appear to sufficiently respond to soil water deficits during
this six‐week period, as evidenced by underadjustment of the
simulated harvest‐time HI values (data not shown). This was
especially evident during years with substantially less than
normal precipitation, e.g., 1989‐1990 and 1994‐1995 at
Sterling (fig. 3).

Relative errors of proso millet grain yield simulations
ranged from -4% at Sterling to 22% at Walsh (table 4 and
fig.�5). The evaluation statistics at Walsh may not be very
meaningful because there were only six observations.
Because of consistently low yields, proso millet at Walsh was
replaced by forage sorghum beginning in 1993. Similar to
observations for winter wheat, the RMSE for proso millet
grain yields was higher at Stratton than at Sterling (where
millet was calibrated at the toeslope position) and Walsh
(table 4). There was very low agreement between simulated
and observed proso millet grain yields at Sterling (d = 0.13)
with increasing improvement at Stratton and Walsh (d = 0.48
and 0.67, respectively). Overprediction in proso millet grain
yield at Stratton and Walsh may again be due to the inability
of the GPFARM crop growth model to sufficiently respond
to soil water deficits during critical growth periods. The
simulated proso millet CV was underestimated at Sterling
and Walsh and overestimated at Stratton; the differences in
observed and simulated proso millet grain yield CVs were the
largest among the four crops (table 4). This may be due to the
low number of observations at the three experimental
locations, which contributed to high variances in both the
observed data and simulated model output response. For

Figure 7. Simulated against observed corn (a and b) and sorghum
(c)�average dry mass grain yield values for the Sterling/Stratton (corn)
and Walsh (sorghum) experiment locations (d is the index of agreement).

sorghum, which was planted only at Walsh, the RE was very
low at -4% (table 4 and fig. 5). The RMSE value (858 kg
ha-1) was in the middle of the range of winter wheat and proso
millet RMSE values (500‐1100 kg ha-1), and the index of
agreement value was the highest among the four crops at
0.81. The simulated CV of sorghum grain yield was nearly
identical to the observed CV.

Overall for the four crops, table 4 and figure 5 show that
the lowest RE value was obtained with winter wheat at
Sterling (RE = 3.4%), and the best combination of RE and
index of agreement value was obtained with sorghum at
Walsh (-4.1% and 0.81, respectively). Long‐term trends in
overprediction and underprediction also are manifested in
the RE statistics presented in table 4 and figure 5. Based on
the RMSE values, the best simulations of grain yield were for
proso millet at Walsh (495 kg ha-1) and the worst were for
corn at Stratton (2188 kg ha-1). However, RMSE is difficult
to compare across crops because it depends on the absolute
magnitude of the variable, e.g., observed corn grain yield is
much higher than observed winter wheat grain yield, so corn
should have higher RMSE values.

Similar to RE, high RMSE values typically indicate either
strong overprediction/underprediction or considerable
scatter when measured data are plotted against simulated
model output response. This is evident in figure 6, where
winter wheat grain yield was mostly underpredicted at
Stratton (fig.�6b) and proso millet was overpredicted at
Walsh (fig. 6f). It is also evident in figure 7, where corn grain
yield was mostly overpredicted at Sterling and Stratton (figs.
7a and 7b, respectively). Index of agreement values ranged
from a low of 0.13 for proso millet grain yield at Sterling to
a high of 0.81 for sorghum grain yield at Walsh. Simulated
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CV was within ±10% of observed among all four crops, with
the exception of the simulated proso millet grain yield CVs
at all three experimental locations.

Based on the above evaluation, the EPIC‐based crop
growth model in GPFARM seems most appropriate for
estimating long‐term average crop yields or trends in yields
rather than simulating year‐to‐year variability in crop yields
in eastern Colorado. Other researchers who have evaluated
the EPIC crop growth model or its implementation in
GPFARM have reported similar results (e.g., Kiniry et al.,
1995; Jara and Stockle, 1999; Cabelguenne et al., 1999;
Andales et al., 2003).

In this article, only simulated grain yield results are
presented; however, Andales et al. (2003) also analyzed
simulated biomass and HI results. They found that for corn,
biomass was overpredicted by 35% to 45%, whereas mean
simulated HIs were similar to observed values. For winter
wheat, biomass was reasonably predicted, but the agreement
between mean simulated and observed HIs was poor. Andales
et al. (2003) concluded that errors in prediction of biomass
seem to be the major reason for errors in simulated grain yield
for corn, whereas in winter wheat, the contribution of HI to
error in simulated grain yields was the dominant factor.
Cabelguenne et al. (1999) also confirmed that EPIC
overestimated vegetative biomass and grain production,
especially under conditions of pronounced water stress.

SOIL WATER CONTENT, CROP RESIDUE, AND SOIL RESIDUAL
NO3-N EVALUATION

GPFARM better simulated trends between locations (both
magnitudes and differences) in total soil water content and
crop residue than it did for grain yield predictions (with the
exception of sorghum grain yield). Similarly, GPFARM
correctly distinguished differences in total soil residual
NO3-N between locations but moderately underestimated
mean values at all three locations. For total soil profile water
content and residual NO3-N, Stratton had the highest values
for both observed and simulated totals (table 4). Sterling had
the highest amount of crop residue based on observed data,
but GPFARM simulations showed Stratton with the highest
amount of crop residue. In simulating differences between
locations, GPFARM was able to correctly distinguish
statistically  significant differences (P < 0.05) between all
locations for both crop residue and total soil profile residual
NO3-N. For total soil profile water content, observed data
showed statistically significant differences between Sterling
and the other locations, but no difference between Stratton
and Walsh (table 4). In comparison, GPFARM predicted
statistically  significant differences between all locations for
total soil profile water content (table 4).

Overall, total soil profile water content simulations were
better at Sterling (intermediate RMSE and highest d value)
than at Stratton and Walsh, although Walsh had the lowest
soil profile water content RE at 6%. This may be attributed
to better assessment of soil properties and more complete

Figure 8. Simulated against observed (a) total soil profile (120 cm) water content, (b) crop residue, and (c) total soil profile (120 cm) residual NO3-N
values for the eastern Colorado experiment locations (RE is the relative error).
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precipitation records at Walsh (several on‐site precipitation
records were missing at Sterling and Stratton, especially
during winter months). These precipitation records were
filled using data from the nearest weather stations (within 30
km of the experimental sites) in the Colorado Climate Center
(Colorado State University) network. Mean water content
was overpredicted for all three locations, but relative errors
in mean water contents were all less than 10% (table 4 and fig.
8). The reasons for the overprediction were difficult to
identify because of lack of experimental information on some
water balance components (e.g., surface runoff) and on root
distribution in the soil profile. However, GPFARM simulated
the correct timing for most observed drying and wetting
events over time for all three locations (data not shown).
Simulated and observed variability in soil water content were
very similar at Sterling and Walsh; simulated variability was
less than observed at Stratton (table 4).

GPFARM simulations of total soil water content in the
profile were comparable in accuracy to those of RZWQM,
which simulates the soil water balance with greater process
detail.The index of agreement values between GPFARM and
observed total soil profile water content ranged from 0.71 at
Walsh to 0.79 at Sterling (table 4). In comparison, Wu et al.
(1999) reported lower d values (0.54 to 0.59) for total water
content simulations of RZWQM during two seasons in a
sandy soil near Princeton, Minnesota. The errors in soil water
content simulations were possibly well within the range of
spatial variability considering that only two point
measurements were taken per treatment (1500 m2 average
plot area per treatment). GPFARM assumes a 2 h duration for
all storms, and the ability to use actual storm intensities from
breakpoint rainfall data would almost certainly improve
simulation of soil water content. Furthermore, GPFARM
does not simulate rainfall interception by crop residue, but
the addition of this process would potentially improve the soil
water content simulations.

The crop residue RE values were lower at Sterling and
Stratton (RE = -4% and 11%, respectively) than at Walsh
(RE�= 32%; table 4). The RMSE values were lowest at
Sterling and similar in magnitude to the corn grain yield
RMSE values (~2000 kg ha-1; table 4). In addition, better
agreement between simulated and observed crop residue was
obtained at Sterling and Stratton (d = 0.76 and 0.70) than at
Walsh (d = 0.62). The simulated CV was underestimated at
all locations, with the simulated CV being closer to the
observed CV at Sterling than at Stratton or Walsh (table 4).
Amounts of surface crop residue are closely tied to amounts
of crop biomass produced. The model assumes that 80% of
aboveground biomass is added to existing surface crop
residue at harvest. Thus, errors in biomass prediction
translate into errors in crop residue prediction. Inaccuracies
in the simulation of residue addition during harvesting and
subsequent decay may have also contributed to errors
(Andales et al., 2003). Finally, all cropping systems were
under no‐till management in this study, with moderate
amounts of crop residue on the soil surface. Mohamoud and
Ewing (1990) and Savabi and Stott (1994) showed that
interception of precipitation by crop residue can
significantly reduce infiltration, especially during low‐
intensity rainfall events occurring over dry crop residues.

The soil residual NO3-N relative error was lowest in
absolute magnitude at Stratton (RE = -7%), followed by
Sterling and Walsh (RE = -15% and -25%, respectively).

Figure 9. Simulated against observed total sol profile (120 cm) water
content values for the (a) Sterling, (b) Stratton, and (c) Walsh experiment
locations (d is the index of agreement).

Simulated means were consistently underestimated at all
three locations (fig. 8), and the RMSE values were lowest at
Sterling and greatest at Walsh. Table 4 shows that the highest
d value was obtained at Sterling (d = 0.69), while d values
were much lower at Stratton and Walsh (d = 0.59 and 0.45,
respectively).  In general, predicted soil residual NO3-N
variability was close to observed, with the exception of a
larger (~18%) overprediction in variability at Stratton (table
4). Predicted soil residual NO3-N was highly sensitive
(positively correlated) to the amount of organic matter (table
2) in the soil and negatively correlated to crop leaf area index
(table 3). Numerous interrelated plant‐soil‐environment
factors that influence nitrogen cycling in the soil make
prediction of residual soil profile NO3-N a difficult task.
Predicting NO3-N amounts over an extended number of
years is an even greater challenge, e.g., a lack of within‐
season residual NO3-N data prevented year‐to‐year
evaluation of NO3-N root uptake. Overall, the simulations of
total soil residual NO3-N seem reasonable, especially with
respect to lower RMSE values, but further improvements in
GPFARM modeling of crop NO3-N uptake and N dynamics
may be needed.
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Figure 10. Simulated against observed total crop residue values for the (a)
Sterling, (b) Stratton, and (c) Walsh experiment locations (d is the index
of agreement).

A comparison of RE values for total soil profile water
content, crop residue, and total soil residual NO3-N reveals
that GPFARM's long‐term predictions were generally within
a range of ±20% or better (table 4 and fig. 8). Overall for the
three process state variables, the lowest RE value was
obtained with crop residue at Sterling (-3.8%). The highest
RE values were found for crop residue and total soil residual
NO3-N at Walsh (31.8% and -25.1%, respectively). Not
surprisingly, the observed CVs for these variables were very
high at Walsh (~70%; table 4). Although RMSE values are
unit dependent (and cannot be directly compared across the
three process state variables), total soil profile water content
had fairly low RMSE and high index of agreement (d) values,
as illustrated by the low scatter and lack of prediction bias in
observed against simulated values in figure 9. Figure 10
shows that, compared to total soil profile water content, crop
residue prediction exhibited slightly lower index of
agreement values (caused by both overprediction and larger
scatter). Total soil residual NO3-N was somewhat
underpredicted (fig. 11), especially at Stratton and Walsh,
even though the RMSE values were fairly low. Overall, index
of agreement values ranged from a low of 0.45 for total soil
residual NO3-N at Walsh to a high of 0.79 for total soil profile

Figure 11. Simulated against observed total soil profile (120 cm) residual
NO3-N values for the (a) Sterling, (b) Stratton, and (c) Walsh experiment
locations (d is the index of agreement).

water content at Sterling (table 4). Table 4 also shows that
simulated CV was within ±20% of observed CV for all three
process state variables; differences in simulated CVs were
the largest for crop residue and total soil residual NO3-N
(which also had the highest observed CVs).

SUMMARY AND CONCLUSIONS
Compared to other more complex agricultural system

models, and considering the intended purpose of GPFARM
(i.e., to serve as a whole‐farm/ranch DSS for long‐tem
strategic planning across the Great Plains), the model appears
to have reasonably simulated average dry mass grain yield
(with the exception of corn), total soil profile water content,
dry mass crop residue, and total residual soil profile NO3-N
pooled across landscape positions at the eastern Colorado
experimental  sites. Overpredictions in corn yield were a
result of too high a value for the corn HI crop growth
parameter and to the inability of the GPFARM crop growth
model to correctly respond to soil water deficits at critical
growth periods. GPFARM model performance was
reasonable for long‐term mean annual winter wheat, proso
millet, and sorghum grain yield predictions, but was less
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satisfactory for winter wheat and proso millet on an annual
basis (fig. 6). GPFARM simulations of total soil water
content in the profile were quite reasonable; in fact, they were
similar in accuracy to those produced by the RZWQM, which
simulates soil water balance with greater process detail. Dry
mass crop residue predictions were also very reasonable for
Sterling and Stratton, but not as robust at Walsh. Simulated
mean values of total residual soil profile NO3-N were
moderately underestimated at all three locations.

GPFARM correctly simulated long‐term location
differences in corn grain yield, crop residue, and total soil
profile residual NO3-N. Results were mixed on simulated
statistical differences in winter wheat grain yield, proso
millet grain yield, and total soil profile water content.
However, the model correctly predicted that the Sterling and
Stratton experimental sites were generally more productive
in grain yield than the Walsh site. In general, GPFARM had
more trouble simulating location differences for grain yield
than for total soil profile water content, crop residue, and total
soil profile NO3-N. The unavailability of within‐season crop
growth data made evaluation of the crop growth model
difficult, and calibration was based only on final grain yield
and biomass data. In addition, the soil profile water content
measurements were too sporadic to aid in pinpointing
problems with GPFARM grain yield prediction. Overall,
however, GPFARM performed reasonably well in simulating
long‐term statistical differences among the eastern Colorado
dryland locations along a gradient of ET demand.

GPFARM simulations for average dry mass grain yield,
total soil profile water content, dry mass crop residue, and
total residual soil profile NO3-N illustrate the difficulty in
assessing model performance when using different statistical
evaluation methods. It is important to remember that RE is
an arithmetic average over the duration of data, i.e., the RE
shows that long‐term bias in the simulated against observed
deviations can cancel out (especially if the model both
overpredicts and underpredicts with similar frequency). The
RMSE and d values, however, indicate the average event‐by‐
event (short‐term) prediction errors and should be considered
more robust indicators of model performance, e.g., the index
of agreement accounts for individual simulated against
observed deviations. Overall analysis of simulation results
using the discrete evaluation statistics shows GPFARM to be
less efficacious for short‐term predictive ability.

In this research study, the importance of reproducing long‐
term trends between experimental locations was
emphasized.  However, careful examination of the short‐term
simulation results raises the following question: How
important and reliable is a long‐term trend analysis if the
seasonal or annual model predictions are less accurate? The
answer depends on the intended purpose and use of the
model. GPFARM appears to be adequate for strategic
planning of cropping systems across multiple dryland
locations, but the simulation model may be lacking in
accuracy for predictions on a short‐term (tactical) planning
basis (especially for grain yield). For example, more rigorous
testing and improvement of the EPIC‐based crop growth
model in GPFARM is needed under dryland conditions in
eastern Colorado using detailed observations of soil water
content at depth, biomass, LAI, phenology, harvest index and
grain yield for various crops. Additional testing and
improvement of the C and N cycling component is needed as

well. It is anticipated that improvements in the crop growth
and environmental components (including improved
parameterization)  of the GPFARM simulation model will
improve its accuracy for both strategic and tactical appli-
cations.
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